Resampling

重采样

  采样,顾名思义,就是从特定的概率分布中抽取相应样本点的过程。采样在机器学习中有着非常重要的应用:它可以将复杂的分布简化为离散的样本点;可以用重采样对样本集进行调整以更好地适应后期的模型学习;可以用于随机模拟以进行复杂模型的近似求解或推理。另外,采样在数据可视化方面也有很多应用,可以帮助人们快速、直观地了解数据的结构和特性。 [Read More]

Resampling For Imbalanced Dataset

不均衡样本集的重采样

为什么很多分类模型在训练数据不均衡时会出现问题? 本质原因是模型在训练时优化的目标函数和人们在测试时使用的评价标准不一致。这种“不一致”可能是由于训练数据的样本分布与测试时期望的样本分布不一致,例如,在训练时优化的是整个训练集(正负样本比例可能是1∶99)的正确率,而测试时可能想要模型在正样本和负样本上的平均正确率尽可能大(实际上是期望正负样本比例为1∶1); 也可能是由于训练阶段不同类别的权重(重要性)与测试阶段不一致,例如训练时认为所有样本的贡献是相等的,而测试时假阳性样本(FalsePositive)和伪阴性样本(FalseNegative)有着不同的代价。 [Read More]