推荐 /搜索 /广告 是目前机器学习成熟落地的三大马车, 对各个互联网公司商业变现有着重要的意义。

  搜索的目标是降低延时增大 query 的相关性, 广告的目标是增大 CTR, 视频推荐系统的目标是播放时长点击等综合指标。

  推荐系统是一个系统 推荐系统首先是一个系统, 作为有盈利的互联网公司的核心, 就注定在整体架构上十分的复杂, 比如涉及到 NLP, 召回, 排序, 接日志洗日志算模型, 书上说的推荐方式都是单一的, 比如利用 CF(协同过滤) 进行推荐, 在实际落地中推荐的召回一般是有多路的, 这样才会有多样性。(书中甚至几乎没有提到过候选集这种每个推荐系统都存在的东西)

  反作弊