Description
Time Limit: 2000MS | Memory Limit: 65536K | |
---|---|---|
Total Submissions: 160241 | Accepted: 48852 |
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
- Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
- Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
Solutions
1. BFS
def minStep_bfs(start:int, end: int) -> int:
queue = collections.deque()
steps = [None] * (end + 1)
queue.append((start, 0))
while queue:
pos, cnt = queue.popleft()
if 0 <= pos <= end and not steps[pos]:
steps[pos] = cnt
if pos == end:
return steps[pos]
queue.append((pos - 1, cnt + 1))
queue.append((pos + 1, cnt + 1))
queue.append((pos * 2, cnt + 1))
2. DFS
def minStep_dfs(start:int, end: int) -> int:
# backward thinking
if start >= end: # only -1
return start - end
if end % 2 == 0:
if start < end // 2:
return minStep_dfs(start, end // 2) + 1
elif start == end // 2:
return 1
else: # start > end // 2
return min(end - start, 1 + start - end // 2) # 1 is one operation of //, start - end // 2 is backward
else:
return min(minStep_dfs(start, end + 1), minStep_dfs(start, end - 1)) + 1
更精简化的:
def minStep_dfs1(start:int, end: int) -> int:
# backward thinking
if start >= end: # only -1
return start - end
if end % 2 == 0:
return min(end - start, minStep_dfs1(start, end // 2) + 1)
else:
return min(minStep_dfs1(start, end + 1), minStep_dfs1(start, end - 1)) + 1
def minStep_dfs2(start:int, end: int) -> int:
if start >= end: # only -1
return start - end
if end % 2 == 0:
return min(end - start, minStep_dfs2(start * 2, end) + 1)
else:
return min(minStep_dfs2(start, end + 1), minStep_dfs2(start, end - 1)) + 1