Description
On a 2-dimensional grid
, there are 4 types of squares:
1
represents the starting square. There is exactly one starting square.2
represents the ending square. There is exactly one ending square.0
represents empty squares we can walk over.-1
represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Example 1:
Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
Note:
1 <= grid.length * grid[0].length <= 20
Solutions
找到所有不重复的从起点到终点的路径长度,每个非障碍物坐标只能访问一次。
1. Backtracking, DFS-Brute Force
# Time: O(4^{mn})
# Space: O(m*n)
class Solution:
def uniquePathsIII(self, grid: List[List[int]]) -> int:
res = [0]
self.m, self.n, empty = len(grid), len(grid[0]),1
for i in range(self.m):
for j in range(self.n):
if grid[i][j] == 1: x,y = (i, j)
elif grid[i][j] == 2: self.end = (i, j)
elif grid[i][j] == 0: empty += 1
self.dfs(grid, x, y, empty, res)
return res[0]
def dfs(self, grid, x, y, empty, res):
if not (0 <= x < self.m and 0 <= y < self.n and grid[x][y] >= 0): return
if (x, y) == self.end:
res[0] += empty == 0
return
grid[x][y] = -2
self.dfs(grid, x + 1, y, empty - 1, res)
self.dfs(grid, x - 1, y, empty - 1, res)
self.dfs(grid, x, y + 1, empty - 1, res)
self.dfs(grid, x, y - 1, empty - 1, res)
grid[x][y] = 0
# 39/39 cases passed (56 ms)
# Your runtime beats 88.68 % of python3 submissions
# Your memory usage beats 100 % of python3 submissions (12.6 MB)
2. DP
# Time: O(m*n*2^{m*n})
# Space: O(m*n)
class Solution:
def uniquePathsIII(self, grid):
R, C = len(grid), len(grid[0])
def code(r, c):
return 1 << (r * C + c)
def neighbors(r, c):
for nr, nc in ((r-1, c), (r, c-1), (r+1, c), (r, c+1)):
if 0 <= nr < R and 0 <= nc < C and grid[nr][nc] % 2 == 0:
yield nr, nc
target = 0
for r, row in enumerate(grid):
for c, val in enumerate(row):
if val % 2 == 0:
target |= code(r, c)
if val == 1:
sr, sc = r, c
if val == 2:
tr, tc = r, c
@lru_cache(None)
def dp(r, c, todo):
if r == tr and c == tc:
return +(todo == 0)
ans = 0
for nr, nc in neighbors(r, c):
if todo & code(nr, nc):
ans += dp(nr, nc, todo ^ code(nr, nc))
return ans
return dp(sr, sc, target)
# 39/39 cases passed (64 ms)
# Your runtime beats 65.87 % of python3 submissions
# Your memory usage beats 7.69 % of python3 submissions (13.7 MB)