Description
You have d
dice, and each die has f
faces numbered 1, 2, ..., f
.
Return the number of possible ways (out of fd
total ways) modulo 10^9 + 7
to roll the dice so the sum of the face up numbers equals target
.
Example 1:
Input: d = 1, f = 6, target = 3
Output: 1
Explanation:
You throw one die with 6 faces. There is only one way to get a sum of 3.
Example 2:
Input: d = 2, f = 6, target = 7
Output: 6
Explanation:
You throw two dice, each with 6 faces. There are 6 ways to get a sum of 7:
1+6, 2+5, 3+4, 4+3, 5+2, 6+1.
Example 3:
Input: d = 2, f = 5, target = 10
Output: 1
Explanation:
You throw two dice, each with 5 faces. There is only one way to get a sum of 10: 5+5.
Example 4:
Input: d = 1, f = 2, target = 3
Output: 0
Explanation:
You throw one die with 2 faces. There is no way to get a sum of 3.
Example 5:
Input: d = 30, f = 30, target = 500
Output: 222616187
Explanation:
The answer must be returned modulo 10^9 + 7.
Constraints:
1 <= d, f <= 30
1 <= target <= 1000
Solutions
找到用 d 个有 f 个面的骰子投出加和为 target 的投法次数。
1. DP-Bottom up
因为每次掷骰子的过程都是一样的,所以可以整理成子任务的过程,所以可以想到用 DP。
首先看下 dp[i][t] 表示什么,这里表示使用前 i 个骰子能够扔出加和为 t 的次数。
- 初始化
- dp[0][0] = 1
- 状态转移
- dp[i][j-1]与 dp[i-1]开头的关系是什么?
- 如果我在第 i 次扔出了 $k(1<=k<=f)$,呢么前 i-1 次的和为 j-k,对应 dp[i-1][j-k]
- 就有方程 dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j - 2] + … + dp[i - 1][j - f]
- 边界条件:dp[1][k] = 1 ( 1<= k <= min(target, f) )
- dp[i][j-1]与 dp[i-1]开头的关系是什么?
# Time: O(df*target)
# Space: O(d*target)
class Solution:
def numRollsToTarget(self, d: int, f: int, target: int) -> int:
modulo = 10 ** 9 + 7
dp = [[0 for _ in range(target + 1)] for _ in range(d + 1)]
dp[0][0] = 1
for i in range(1, d + 1):
for j in range(1, target + 1):
lp = min(j, f)
for k in range(1, lp + 1):
dp[i][j] += dp[i - 1][j - k]
return dp[d][target] % modulo
# 65/65 cases passed (908 ms)
# Your runtime beats 23.63 % of python3 submissions
# Your memory usage beats 100 % of python3 submissions (13.1 MB)
2. DP - Top Down
Top Down 只存两行降维。
class Solution(object):
def numRollsToTarget(self, d, f, target):
# Time: O(df*target)
# Space: O(target)
from functools import lru_cache
class Solution2:
def numRollsToTarget(self, d: int, f: int, target: int) -> int:
modulo = 10**9 + 7
@lru_cache(maxsize=None)
def dynamic_programming(i, t):
if i == 0:
return 1 if t == 0 else 0
lp = min(t, f)
ans = 0
for j in range(1, lp + 1):
ans = (ans + dynamic_programming(i-1, t-j))
return ans
return dynamic_programming(d, target) % modulo
# 65/65 cases passed (348 ms)
# Your runtime beats 70.31 % of python3 submissions
# Your memory usage beats 100 % of python3 submissions (19.8 MB)
3. 滚动数组优化
滚动数组对空间降维,只需要一行,逆序计算,从右边开始计算:
# Time: O(df*target)
# Space: O(target)
from functools import lru_cache
class Solution:
def numRollsToTarget(self, d: int, f: int, target: int) -> int:
modulo = 10**9 + 7
dp = [0 for _ in range(target + 1)]
dp[0] = 1
for i in range(1, d + 1):
for k in range(target, -1, -1):
dp[k] = 0
lp = min(f, k)
for j in range(1, lp + 1):
dp[k] = (dp[k] + dp[k-j]) % modulo
return dp[target]
# 65/65 cases passed (760 ms)
# Your runtime beats 31.54 % of python3 submissions
# Your memory usage beats 100 % of python3 submissions (12.8 MB)
还有一种非常快的操作
class Solution(object):
def numRollsToTarget(self, d, f, target):
"""
:type d: int
:type f: int
:type target: int
:rtype: int
"""
if target < d or target > d * f:
return 0
dp = [0] * (target + 1)
if target > d * (1 + f) / 2:
target = d * (1 + f) - target
for i in range(1, min(f, target) + 1):
dp[i] = 1
for i in range(2, d + 1):
new_dp = [0] * (target + 1)
for j in range(i, min(target, i * f) + 1):
new_dp[j] = new_dp[j - 1] + dp[j - 1]
if j - 1 > f:
new_dp[j] -= dp[j - f - 1]
dp = new_dp
return dp[target] % (10 ** 9 + 7)