Description
Given a set of distinct integers, nums, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: nums = [1,2,3]
Output:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
Solutions
在一个不含重复的整数数组中,找出所有的子集。
1. Backtracking
# Time: O(n^2)
# Space: O(n)
class Solution:
def subsets(self, nums: List[int]) -> List[List[int]]:
if not nums:
return []
res = []
self.dfs(nums, 0, [], res)
return res
def dfs(self, nums, start, path, res):
res.append(path)
n = len(nums)
for i in range(start, n):
self.dfs(nums, i+1, path+[nums[i]], res)
# 10/10 cases passed (32 ms)
# Your runtime beats 91.37 % of python3 submissions
# Your memory usage beats 100 % of python3 submissions (12.9 MB)
2. 迭代
class Solution(object):
def subsets(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
res = [[]]
for n in nums:
l = len(res)
for i in range(l):
res.append(res[i] + [n])
return res
# 10/10 cases passed (44 ms)
# Your runtime beats 35.69 % of python3 submissions
# Your memory usage beats 100 % of python3 submissions (12.9 MB)
3. Bit Manipulation
class Solution(object):
def subsets(self, nums):
res = []
nums.sort()
for i in range(1<<len(nums)):
tmp = []
for j in range(len(nums)):
if i & 1 << j: # if i >> j & 1:
tmp.append(nums[j])
res.append(tmp)
return res
# 10/10 cases passed (28 ms)
# Your runtime beats 97.24 % of python3 submissions
# Your memory usage beats 100 % of python3 submissions (12.9 MB)